
Introduction

Human papillomavirus (HPV) is the most common sexually transmitted infection, with an incidence rate of over 14 million 
people each year.1 Of the more than 100 known types of HPV, many are associated with illness in both men and women 
worldwide, and 13 types are described as being related to cancer by the International Agency for Research on Cancer.2-3 
In addition to cervical cancer, HPV has also been associated with diseases like cervical intraepithelial neoplasia, genital 
condyloma, laryngeal papillomatosis, and cancers of the penis, anus, and oropharynx.3-4

There are currently three globally licensed vaccines that protect against various types of HPV. The bivalent (2vHPV) vaccine, 
Cervarix® (GlaxoSmithKline), protects against HPV types 16 and 18, which are responsible for around 90% of cases of cervical 
cancer.4 Gardasil® (Merck & Co), a quadrivalent (4vHPV) vaccine, protects against HPV types 16 and 18, as well as genital 
warts caused by HPV types 6 and 11.5 Finally, Gardasil® 9 (Merck & Co), a 9-valent (9vHPV) vaccine, also protects against 
HPV types 31, 33, 45, 52, and 58, providing protection against most cervical cancers and genital warts, along with HPV-related 
vulvar, vaginal, and anal cancers.5-8 

The development and clinical testing of multivalent vaccines has traditionally required running separate tests to measure 
type-specific antibodies to different HPV genotypes.9-12 The Gardasil® 4vHPV and 9vHPV vaccines in particular protect 
against multiple types of HPV,5-8 and their development was optimized using Luminex’s xMAP® multiplex technology. xMAP 
multiplexing technology enabled the measurement of type-specific antibodies to several HPV genotypes simultaneously.9-12 
This technology has powered the development of the initial vaccines from virus-like particles (VLPs), facilitated clinical trials, 
assisted in immunobridging studies, and provided insight into the vaccines’ long-term effects through immunogenicity and 
epidemiological studies.
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Development of the Gardasil® 4vHPV 
vaccine using xMAP multiplexing assays 

Opalka et al. first developed a 4vHPV competitive xMAP 
immunoassay (4vHPV cLIA) to measure type-specific antibodies 
to several HPV genotypes simultaneously.9 The group utilized 
Luminex xMAP Technology to enable the quantification of HPV 
type-specific antibody titers from a single serum sample. To 
accomplish this, HPV VLPs were covalently coupled to xMAP 
microspheres and added to 96-well plates. The competitive assay 
enabled the measurement of antibodies specific to HPV types 6, 11, 
16, and 18 within serum, which prevented the binding of fluorescent 
HPV-specific antibodies labeled with phycoerythrin (PE).10 

xMAP Technology offered a robust and sensitive system 
that was further optimized and validated for use in additional 
epidemiological studies and vaccine clinical trials.9-10 Dias et al. 
worked to increase the clinical specificity and analytical sensitivity 
of the assay to help differentiate low-titer antibody responses 
of those infected with HPV from non-infected individuals. The 
authors also improved antibody specificity, optimized VLP and 
antibody concentrations, fine-tuned various components of the 
assay, and automated it using a TECAN Genesis Workstation.10 
The resulting high-throughput assay was sensitive and robust, 
and was used to monitor the immune response in Phase IIB and 
III clinical trials, as well as in later studies, where sensitivity and 
throughput were further optimized.10, 13

Despite its many advantages, the 4vHPV cLIA assay only 
measures a subset of the total immune response to vaccination. 
Although understanding the impact of the vaccine on induction 
of anti-HPV 6, 11, 16, and 18 type-specific neutralizing antibodies 
is essential, it is also critical to understand a more general 
measurement of the humoral immune response to the vaccine. The 
total IgG xMAP immunoassay (total IgG LIA) was consequently 
developed in-house to provide a supportive analysis tool 
throughout vaccine development and later studies.11, 14 The assay 
utilizes VLPs coupled to nine distinct xMAP microspheres to detect 
IgG antibodies in serum to HPV type 6, 11, 16, 18, 31, 33, 45, 52, 
and 58 VLPs. Although the assay shares some components with 
the 4vHPV cLIA, it has key differences. Rather than restricting the 
measurement of binding to a single neutralizing epitope, the assay 
enables measurement of IgG antibodies anywhere on the complete 
VLP.11, 14 When both the total IgG LIA and 4vHPV cLIA were used 
side by side to measure the antibody responses of young women 
to the 4vHPV vaccine across 48 months in a clinical study, the 
4vHPV vaccine was shown to induce seroconversion in almost all 
participants. When these assays are used in combination, they 
provide a more complete understanding of the immune response 
to vaccination and have enabled the development, approval, and 
post-licensure studies of the Gardasil® 4vHPV vaccine.14

The international, randomized, double-blind, placebo-
controlled Phase III FUTURE 1 (NCT00092521) and FUTURE 2 
(NCT00092534) trials examined the prophylactic efficacy of the 
4vHPV Gardasil® vaccine on cervical intraepithelial neoplasia, 
adenocarcinoma in situ, cervical cancer, condyloma acuminata, 
vulval intraepithelial neoplasia, vaginal intraepithelial neoplasia, 
vulvar cancer, and vaginal cancer.15-18 The studies monitored 
incidence of disease in people that received the vaccine compared 
to a placebo group, and xMAP Technology was critical throughout 

the clinical trial process and in extension studies, where antibody 
responses to the vaccine were measured and data from these 
studies was often included as a secondary outcome clinical 
trials.15-18 The international FUTURE 1 study examined 5,455 
women between the ages of 16 and 24 who were randomized 
to either the 4vHPV vaccine or placebo group. The vaccine was 
shown to be effective at preventing anogenital diseases associated 
with HPV.16 Similarly, the FUTURE 2 trial randomized over 12,000 
women between the ages of 16 and 26 to receive 3 doses of 
either the 4vHPV vaccine or a placebo. Antibody titers from 
the 4vHPV cLIA assay were included as a secondary outcome. 
Women who received the 4vHPV vaccine had lower incidence of 
HPV-associated diseases compared with the placebo group.17 In 
both of these studies and associated research, vaccination was 
repeatedly found to be effective at preventing lesions and disease 
associated with HPV infection compared to the placebo group, 
and xMAP Technology demonstrated that the vaccine showed 
hallmarks of a sustained antibody response.16-19 The xMAP assays 
directly supported the development and clinical testing of this 
vaccine, and it was approved for use in women between the ages of 
16 and 26 by the FDA in 2006.20

HPV infection can lead to disease in men as well, including 
anogenital condyloma acuminata, along with cancers of the 
penis, anus, and oropharynx.21 An initial randomized, placebo-
controlled, double-blind study examined the 4vHPV vaccine in 
4,065 boys and men 16 to 26 years of age. The study aimed to 
elucidate whether the 4vHPV vaccine could reduce the incidence 
of HPV-related genital lesions. Antibody titers were monitored as 
a secondary outcome and it was found that the 4vHPV vaccine 
prevented infection with HPV types 6, 11, 16, and 18, along with 
incidence of genital leisons.22 This trial was followed by a study 
examining the immunogenicity and safety of the vaccine in 150 
men aged 27 to 45 years. xMAP Technology again helped measure 
antibody responses as a secondary outcome and found them 
comparable to vaccination results initially seen in the younger age 
group.23

Bridging studies

In addition to being used for initial vaccine development and key 
clinical trials, the cLIA and total IgG LIA were used generate data 
supporting regulatory approval for additional populations that 
can be more difficult to study. These “bridging studies” examined 
several groups, including pre-adolescent boys and girls, mid-adult 
women, and special populations.24

The cLIA and total IgG LIA were immensely valuable in bridging 
studies examining the vaccine in pre-adolescent boys and girls 
since efficacy studies were not feasible in these populations.25-26 
The study examined girls (n= 506) and boys (n= 510) between 10 
and 15 years of age, in addition to young women (n= 513) between 
16 and 23 years of age. By month 7, antibody responses in the 
younger boys and girls were non-inferior and higher than young 
women in the 16- to 23-year age group. Seroconversion was further 
observed to be ≥99% for all HPV types in trial participants. Another 
study compared the immune response of sexually naïve boys 
versus girls between 9 and 15 years of age. Antibody responses 
of boys measured by the 4vHPV cLIA and total IgG assays were 
non-inferior to girls and demonstrated sustained protection.25, 27



xMAP Technology continued to be used to examine the 4vHPV 
Gardasil® vaccine in mid-adult women aged 25 to 45 years.28-29 
A total of 3,819 women with no recent history of genital warts 
or cervical disease received 3 doses of either the 4vHPV vaccine 
or a placebo. The previously described xMAP assays helped 
periodically measure antibody responses and were included as a 
secondary outcome. Similar to results seen in pre-adolescent boys 
and girls, mid adult-women had peak antibody titers that were 
non-inferior to those in the original 16- to 26-year group.28-29 

The aforementioned xMAP assays have also been utilized to 
understand responses in special populations, such as people with 
HIV, rheumatic diseases, or in immunocompromised populations. 
For example, people with HIV have been shown to have an 
increased risk of infection with the types of HPV associated with 
oncogenic and non-oncogenic disease. Consequently, vaccination 
of this at-risk population may be especially important.24, 30-31 
Understanding HPV serology is important to get a fuller picture 
of both past and present HPV infections in at-risk populations, 
and to better understand a person’s immune status before and 
after vaccination.14-15 Toward this goal, a multiplex serology 
assay utilizing pseudovirions derived from mammalian cells was 
developed and validated. This Pseudovirion-xMAP assay utilizes 

multiplexing technology to simultaneously measure antibody 
responses to 21 types of HPV.31 The assay was used to understand 
the antibody responses to vaccination with either the 4vHPV 
Gardasil® or the bivalent Cervarix® vaccine in 91 HIV-infected 
people. The study found that vaccination of these HIV-infected 
people induced a neutralizing antibody response against the HPV 
types used in the vaccine, as well as other types of HPV not in the 
vaccine.24, 32-33 

Vaccination in those with rheumatic diseases is similarly critical. 
People with rheumatic diseases may be at higher risk for persistent 
HPV infections and downstream disease, including pre-malignant 
and malignant leisons.34 Consequently, a wide variety of studies 
have directly utilized the previously described xMAP multiplex 
assays to better understand the safety and immunogenicity of 
HPV vaccination in various high-risk populations with rheumatic 
diseases, including adult-onset systemic lupus erythematosus,35-38 
childhood-onset systemic lupus erythematosus, juvenile 
dermatomyositis,35 and inflammatory bowel disease.39 The assays 
overall showed that vaccination of these high-risk groups is safe 
and immunogenic, frequently leading to updated guidelines and 
recommendations in high-risk people.35-39

Figure 2. The cLIA process.

Development of the Gardasil® 9vHPV vaccine 
and the associated multiplex assay

The immense success of the Gardasil® 4VHPV vaccine fueled 
further vaccine development and clinical trials. The resulting 
9vHPV vaccine protects against the original types of HPV targeted 
in the 4vHPV vaccine (6, 11, 16, 18), along with 5 additional 
oncogenic types of HPV (31, 33, 45, 52, and 58). As with the 
4vHPV vaccine, xMAP Technology remained essential throughout 
the development of the vaccine and the testing of its safety and 
immunogenicity. Roberts et al. expanded the original 4vHPV 
cLIA9-10 to a 9-plex format for use in clinical studies.12 The resulting 
9vHPV competitive xMAP immunoassay (9vHPV cLIA) functions 
similarly to the 4vHPV cLIA assay, but with an additional 5 HPV 
VLPs coupled to microspheres.12 The previously described total 
IgG LIA had already been developed to a 9-plex format and was 

applied to studies and trials examining the 9vHPV Gardasil® 
vaccine.11

A total of 14,215 women aged 16-26 received either the 4vHPV or 
9vHPV vaccine in a randomized, double-blind, international Phase 
IIb-3 study. The xMAP assays were central to the trial and were 
utilized to understand antibody responses as a primary outcome 
measure in the trial. The responses to HPV types 6, 11, 16, and 18 
in people that received the 9vHPV vaccine were non-inferior to 
responses in the 4vHPV vaccine. The 9vHPV vaccine was also 
found to protect against the 5 additional types of HPV (HPV 31, 
33, 45, 52, and 58).40 The 9vHPV vaccine consequently received 
approval in 2014.20 

A non-inferiority immunogenicity study helped bridge these 
findings to adolescent boys and girls aged 9-15 years. Three 
cohorts received the vaccine, including adolescent girls aged 9-15 
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years, adolescent boys aged 9-15 years, and young women aged 
16-26 years. As in the initial study, the xMAP assays supported the 
immunobridging study as a primary outcome measure and helped 
support the vaccine’s effectiveness. The 3,066 total subjects had 
>99% seroconversion 4 weeks after the third dose. Antibody 
responses in the adolescent boys and girls were non-inferior to 
responses in the 16-26 age group.41 The initial findings were further 
bridged to older women 27-45 years of age. The xMAP assays 
were once again used as a primary outcome measure in the trial 
to demonstrate non-inferior antibody responses in women 27-45 
years (n= 642) compared with women 16-26 years of age (n= 
570).42 

xMAP Technology supports vaccine coadministration 
studies

Most worldwide vaccination schedules depend on concomitant 
vaccine administration. Administration of several vaccines at the 
same time increases vaccination uptake, improves adherence, 
and makes vaccination programs more economical.43 xMAP 
Technology has supported studies exploring concomitant HPV 
vaccination with common childhood vaccines. 

An early study in adolescent women examined concomitant 
administration of the 4vHPV vaccine with meningococcal 
conjugate vaccine (MCV4) and the tetanus, diphtheria, pertussis 
(Tdap) vaccine combination. The study randomized adolescent 
women between the ages of 10 and 17 years to receive either 
concomitant or non-concomitant vaccine administration 
with the 4vHPV vaccine. Administration with the 4vHPV 
vaccine was well-tolerated without any adverse impact on 
immune responses.25, 44 The study concluded that concomitant 
administration was a valid strategy to minimize office visits and 
improve vaccine adherence.25, 43-44 Similar results were also 
found examining 4vHPV and concomitant administration of 
hepatitis B vaccination45 and Tdap with an inactive polio vaccine 
(Tdap-IPV).25 

Likewise, an international study utilized xMAP Technology to 
measure seroconversion rates in boys and girls between the 
ages of 11 and 15 years during concomitant administration 
of the 9vHPV vaccine with MCV4/Tdap (n= 621) compared 
with a non-concomitant group receiving MCV4/Tdap alone 
(n= 620). Concomitant administration was well-tolerated and 
seroconversion rates were non-inferior compared with the 
non-concomitant group.43 Both studies similarly concluded that 
concomitant administration was a valid strategy to minimize office 
visits and improve vaccine adherence.25, 43-44

Alternative vaccination schedules 

Vaccines that require multiple stringent doses are often more 
costly and associated with additional adherence problems.46 
Consequently, xMAP Technology has been used to explore the 
safety and efficacy of alternative vaccination schedules with the 
4vHPV and 9vHPV vaccines. A recent literature review identified 
23 studies examining the immunogenicity of alternative dosing 
schedules for HPV vaccination, many of which actively utilized 
xMAP Technology.47 

For example, a randomized study utilized the total IgG LIA as a 
primary outcome measure to assess antibody response in girls 
that received a booster dose of either 4vHPV or 2vHPV after being 
previously vaccinated with two doses of the 4vHPV vaccine. The 
study concluded that both vaccines increased antibody titers and 
had acceptable safety profiles when given as booster vaccines.46

Studies continued to examine alternative dose regimens with the 
9vHPV vaccine as well, eventually leading to regulatory approval 
of two-dose regimens 6-12 months apart for young adolescents 
that are still widely utilized today.48-49 An ongoing study is further 
investigating this regimen to see if there were any negative 
repercussions to having extended intervals of 1-5 years between 
doses, which could enable more flexible dosing options for areas 
that have constrained resources and logistical hurdles.49 

Understanding long-term safety, 
immunogenicity, and the epidemiological 
impact of HPV vaccination 

xMAP assays continue to be vital in post-licensure studies50-54 
and have helped demonstrate consistency between the immune 
responses of people receiving these vaccines and different 
vaccine lots.55 Post-licensure initiatives of the 4vHPV vaccine 
have occurred in multiple countries worldwide, and many 
utilized the original 4vHPV cLIA and the total IgG LIA in efforts 
to demonstrate durable antibody responses and long-term 
safety.50-52 A 10-year follow-up with the 3-dose regimen of the 
vaccine in pre-adolescents found durable responses and no new 
reported adverse events.51 Meanwhile, a 14-year long-term safety 
follow-up of the 4vHPV vaccine in women from 4 Nordic countries 
also found no new reported medical conditions, and vaccinated 
individuals were found to have maintained high seropositivity rates 
as measured by xMAP assays.52

xMAP Technology was similarly used in post-licensure studies of 
the 9vHPV vaccine to understand the long-term antibody response 
and safety.53-54 One study comparing a group of women given the 
4vHPV vaccine to another group given the 9vHPV vaccine found a 
similar profile between the 2 vaccines 6 years after the first dose.53 
Meanwhile an 8-year follow-up in healthy girls and boys that 
received the 9vHPV vaccine also utilized xMAP Technology and 
found durable antibody responses and a well-tolerated, long-term 
safety profile.54 

Finally, multiplex technology has been involved in epidemiological 
studies demonstrating the positive impact of vaccines on the 
incidence of HPV-associated diseases. A recent study examined 
vaccinated and unvaccinated subjects aged 0 to 75 years that were 
undergoing tonsillectomy for nonmalignant indications. xMAP 
assays were used to measure the prevalence of HPV to provide 
support that the UK’s women-only vaccination program was 
associated with a reduction in oropharyngeal HPV-16 infections 
and possible herd immunity.56 A similar study examining HPV 
vaccination in Swedish youth utilized the previously described 
xMAP assays to demonstrate a decreased prevalence of the HPV 
types the Gardasil® vaccines protects from over the course of 
2008-2018. However, the study noted that other types of HPV 
remain a concern.57 



Summary 

The 3 existing HPV vaccines are capable of preventing the vast majority of cervical cancers.4 The 4vHPV and 9vHPV vaccines provide 
additional protection against types of HPV responsible for other diseases, including genital warts along with vulvar, vaginal, and anal 
cancers.5-8 Traditionally, the development and testing of such vaccines would be time-consuming and costly, requiring running multiple 
tests to measure type-specific antibodies to different HPV genotypes.9-12 However, xMAP multiplexing technology, especially the cLIA and 
total IgG LIA assays, has facilitated the development and clinical testing of these vaccines in a high-throughput and robust manner. These 
assays have facilitated the simultaneous measurement of type-specific antibodies to several HPV genotypes, and have been collectively 
used to measure titers in thousands of individuals.9-12 These assays have also been used for drug registration, market release, and 
post-marketing surveillance. Although the vaccines have long since been approved, the multiplex assays are continuing to power studies 
examining long-term vaccine safety and efficacy, along with the worldwide impact of vaccination against HPV-related diseases.56-57
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